Complete furanics-sugar separations with metal-organic framework NU-1000.
نویسندگان
چکیده
Metal-organic framework NU-1000 selectively adsorbs furanics, while completely excluding the adsorption of monomeric sugars from the same aqueous mixture. The highly refined degree of molecular recognition exhibited by NU-1000 is exemplified with it selectively adsorbing 5-hydroxymethylfurfural, even in the presence of up to a 300-fold excess of glucose in solution.
منابع مشابه
Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition.
Electrophoretic deposition (EPD) is used to assemble metal-organic framework (MOF) materials in nano- and micro-particulate, thin-film form. The flexibility of the method is demonstrated by the successful deposition of 4 types of MOFs: NU-1000, UiO-66, HKUST-1, and Al-MIL-53. Additionally, EPD is used to pattern the growth of NU-1000 thin films that exhibit full electrochemical activity.
متن کاملElectrochemically addressable trisradical rotaxanes organized within a metal-organic framework.
The organization of trisradical rotaxanes within the channels of a Zr6-based metal-organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust Zr(IV)-carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet...
متن کاملHigh efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks.
A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and selenite, of all zirconium-based MOFs st...
متن کاملVersatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation.
Solvent-assisted ligand incorporation (SALI) was utilized to efficiently insert various carboxylate-derived functionalities into the Zr-based metal-organic framework NU-1000 as charge compensating moieties strongly bound to the Zr6 nodes. SALI-derived functionalities are accessible for further chemical reactions such as click chemistry, imine condensation and pyridine quaternization.
متن کاملCorrection to "Metal-Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes".
Metal-organic frameworks with Zr6 nodes, UiO-66 and NU-1000, were investigated as supports for Ir(CO)2 and Ir(C2H4)2 complexes. A single bonding site for the iridium is identified on the nodes of NU-1000, whereas two sites are identified on UiO-66, although at low iridium loadings only one site is occupied. Density functional theory calculations provide structural results that are in good agree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 52 79 شماره
صفحات -
تاریخ انتشار 2016